Nipah Virus- A Rapidly Emerging Zoonoses: A Mini Review

Sidra Zafar*, Zareen Fatima, Muneeza Ekram

Department of Microbiology, Jinnah University for Women, Karachi, Pakistan.

Abstract: Nipah virus is one of the deadliest viruses of Paramyxoviridae family, of the order Mononegavirales. The virus is harbored by Pteropus fruit bats and transmitted to pigs via partially eaten fruits or direct exposure to infectious bat secretions. Viral determinants that contribute to Nipah virus infection include V and W proteins where W protein plays a more prominent role. It is known for causing severe and rapidly progressive encephalitis and thus classified among BSL-4 organisms due to its high mortality rate and lack of vaccines and drugs. Due to wide spread primary host the potential for outbreaks to occur in new regions remains significant and suggests a serious potential for larger epidemics in the future. Therefore proper management and preventive measures are needed to be implemented by health care workers, as well as at the government level.

Keywords: Viral infection, Zoonoses, Fruit bats, Transmission, Nipah virus, BSL-4 organism, Paramyxovirus.

INTRODUCTION

Among the deadliest viruses of the order Mononegavirales, nipah virus belongs to the Paramyxoviridae family of the genus Henipavirus [1]. It is highly pathogenic causative agent of respiratory and encephalitic disease in Southeast Asia [2]. Structure of virus consist of an envelope made of filamentous nucleocapsid made of major structural proteins i.e. fusion protein, glycoprotein, phosphoprotein, matrix protein and large protein (RNA polymerase). However, the genome of the virus is single stranded negative sense RNA which is a hallmark of the Paramyxoviridae family [3, 4]. Pteropus fruit bat serves as a reservoir for the virus. Zoonotic transmission occurs directly or through an intermediate host, however the outbreak was the result of pig-to-human transmission and requires between 4 and 30 days of incubation period [2-5]. Cases with the disease presents abrupt onset of fever, headache, dizziness, vomiting, respiratory and neurological illness including altered consciousness, encephalitis, hypotonia, areflexia etc. [5, 6]. The virus is well known for its outbreak in late 1998 and early 1999 in Malaysia and Singapore which resulted in 276 human cases with 106 deaths [2, 3, 5, 7]. The autopsy of fatal cases showed that CNS seemed to be a major target for the pathogen where it was found to be forming syncytium [3, 8, 9].

PATHOGENICITY

Alpha/beta interferon constitutes STAT proteins (STAT1/STAT2 along with IFN regulatory factor-IRF9). It is part of innate immune system that provides cell protection against viral infections. ISGF3 transcription complex mediates the biological effect of Alpha/beta interferon [10, 11]. Thus IFN-induced, ISGF3-mediated transcription provides protection against broad range of viral infection, however most viruses have evolved to evade the INF induced protec-

*Address correspondence to this author at the Department of Microbiology Jinnah University for Women, Karachi, Pakistan.
E-mails: sid_78@live.com, sidrazfr@gmail.com
Considering the pathogenesis and high mortality rate there are no vaccine available for human use. Recently a subunit HeV vaccine has been approved for animal use in Australia [29-31]. Also a viral envelop protein targeting monoclonal antibodies has been studied for animal and human use as post-exposure prophylaxis but the efficacy of treatment to human disease is yet to be studied [30-32]. Ribavirin is a broad spectrum antiviral drug used primarily for the treatment of hepatitis C and viral hemorrhage. The drug was reported to show effectiveness in Malaysian outbreak with 36% reduction in mortality [33] but also reported by others for its ineffectiveness against henipa virus infection [34-37]. Lately an analogue targeting RNA polymerase dependent on viral RNA has been developed named favipiravir. At present it is in use for influenza [38, 39] and has shown efficacy against Niv infected hamster models [40]. Furthermore the analogue has completed phase 2 trials as showed promising results against Ebolavirus infection in reducing the mortality rate [41].

Most of the vaccines for viral infection are in early stages of development. Using viral components and their expression in various viral vector for vaccine preparation is an attractive approach [42, 43]. Although currently there are no licensed vaccines available for the Niv infection but there are evidences that suggests that effective vaccine is attainable. Vaccines usually targets viruses having an incubation period of at least 5-7 days whereas shorter incubation period leads to unsuccessful vaccine development, therefore, incubation period of Niv is greater than 5-7 day threshold hence a potential vaccine is feasible [2]. Glycoprotein and Fusion outer membrane proteins are used for the development of vaccines to induce immune response in following animal models; African green monkeys (AGMs) hamsters, pigs, cats and ferrets etc. [44-50]. Vaccines using G proteins and Alhydrogel® and CpG oligodeoxynucleotide as an adjuvant exhibit potency against viral infected animal models. Equivac HeV® is an advanced vaccine of this category [51]. However, due to life threatening nature of virus, preparation of live attenuated vaccine with no possibility of reversion is a difficult task [28, 52].

LABORATORY DIAGNOSIS AND PREVENTION

For laboratory diagnosis of viral infection following methods are mainly used; serology, histopathology, immunohistochemistry, electron microscopy, polymerase chain reaction (PCR), and virus isolation. ELISA, immunohistochemistry and serology are safer methods as they don’t intensify the viral infection and can be used as methods for initial screening purpose [53]. Due to limited treatment options for Nipah virus, focus on prevention of viral infections is significant. Following preventive strategies should be of main focus; farm animals should be kept far away from bat reservoirs, partially eaten bat fruits, overcrowding of farm with animals should be avoided, farms should be designed in areas that do not attract bats [54]. Execution of standard precaution and donning of proper personal protective equipment (PPE) by healthcare workers while handling, caring and visiting suspected or confirmed NIV infection patient is important [55-57].

CONCLUSION

Nipah virus is rapidly emerging zoonotic virus that is classified among BSL-4 organisms due to its high mortality and absence of treatment. In recent year’s outbreak of viral infection continue to occur in India and other Asian countries and due to widespread primary host, the potential for outbreaks to occur in new regions remains significant and suggests a serious potential for larger epidemics in the future. Prevention of viral infection is difficult in developing countries as it’s a rare infection compared to other medical health threats faced by the people in low income areas. Improved understanding of the mechanism of zoonotic transmission from bats to humans might facilitate establish possible approaches to stop future introductions of the virus into the human population. The treatment currently used is just supportive and to develop a stable, vigorous and affordable drug or vaccine for the infection is one of the major challenges in order to limit the future epidemics, additionally restriction of activities that increases the interaction between animals, people and fruit bats could help prevent spread of infection.

CONFLICT OF INTEREST

Declared none.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES


most viruses have evolved to evade the INF induced protec-


[28] Satterfield BA, Cross RW, Fenton KA, et al. The immunomodu-


[31] Cartwright, D. Hendra virus vaccine trial reveals no ill-effects. 2016; Available at: https://www.smh.com.au/nation-
a l / q u e e n s l a n d / h e n d r a - v i r u s - v a c -
cine-trial-reveals-no-ill-effects-20160628-gpt9nk.html [Updat-
ed June 28, 2016].

treatment of Nipah virus infection in nonhuman primates with a
neutralizing human monoclonal antibody. Sci Transl Med 2014;
6(242): 242ra82. DOI: 10.1126/scitranslmed.3008929

[33] Chong HT, Kamarulzaman A, Tan CT, et al. Treatment of
acute Nipah encephalitis with ribavirin. J Am Neurol Assoc

[34] Pallister J, Middleton D, Crameri G, et al. Chloroquine admin-
istration does not prevent Nipah virus infection and disease in
DOI: 10.1128/JVI.01847-09

lethal Hendra virus infection in African green monkeys and the
9831-9. DOI: 10.1128/JVI.01163-10

[36] Freiberg AN, Worthy MN, Lee B, Holbrook MR. Combined
chloroquine and ribavirin treatment does not prevent death in
a hamster model of Hendra and Nipah virus infection. J Gen
Virol 2010; 91(3): 765-72. DOI: 10.1099/vir.0.017269-0

(1-poly(C12U) but not ribavirin prevents death in a hamster
model of Nipah virus infection. Antimicrob Agents Chemoth-
er 2006; 50(5): 1768-72.
DOI: 10.1128/AAC.50.5.1768-1772.2006

[38] Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smeef DF,
Barnard DL. Favipiravir (T-705), a novel viral RNA
DOI: 10.1016/j.antiviral.2013.09.015

activities of anti-influenza virus compound T-705. Antimicrob
DOI: 10.1128/AAC.46.4.977-981.2002

protects against Nipah virus infection in the wild. Sci Rep 2018;
8(1): 7604. DOI: 10.1038/s41598-018-25780-3

treatment with favipiravir for Ebola virus disease (the JIKI
Trial): A historically controlled, single-arm proof-of-concept
DOI: 10.1371/journal.pmed.1002066

and effectiveness of an rVSV-vectorized vaccine expressing
Ebola surface glycoprotein: Interim results from the Guinea
ring vaccination cluster-randomised trial. Lancet 2015;

a one health approach to protecting horse, human, and
DOI: 10.3201/eid0303.131159

Single-dose live-attenuated Hendra virus vaccines confer
complete protection by eliciting antibodies directed against
DOI: 10.1016/j.vaccine.2014.02.087

tion-defective VSV-based Hendra virus vaccines provide
protection from lethal challenge in Syrian hamsters. Antiviral

subunit vaccine formulation protects against lethal Hendra virus
DOI: 10.1016/j.vaccine.2008.05.016

recombinant vesicular stomatitis virus vaccines protect ferrets
DOI: 10.1186/1743-422X-10-353

glycoprotein subunit vaccine protects African green monkeys
146ra107. DOI: 10.1128/JVi.03042-2011

live-attenuated vesicular stomatitis virus-based vaccine
protects African green monkeys from Nipah virus disease.
DOI: 10.1016/j.vaccine.2015.03.089

niphip virus vaccines protect pigs against challenge. J Virol
2006; 80(16): 7929-38. DOI: 10.1128/JVI.00263-06

[51] Satterfield BA, Dawes BE, Milligan GN. Status of vaccine
research and development of vaccines for Nipah virus.
Vaccine 2016; 34(26): 2971-5.
DOI: 10.1016/j.vaccine.2015.12.075

proteins of Nipah virus play a key role in pathogenicity in
experimentally infected animals. PLoS One 2010; 5(9):
e12709. DOI: 10.1371/journal.pone.0012709

virus infection in animals. 2002; Available at: https://coin-
f a o . o r g / c o i n - s t a t i c / c e m s / m e-
dia/1/13170263993060/2002_01_high.pdf

[54] Nahar N, Mondal UK, Sultana R, et al. Piloting the use of
indigenous methods to prevent Nipah virus infection by
interrupting bats’ access to date palm sap in Bangladesh.
Health Promot Int 2012; 28(3): 378-86.
INTRODUCTION

Therefore Viruses that are missing V proteins are more prone to undergo proteolysis and suppresses the interferon activation [27]. The Nipah virus V protein modulates TLR3 and Inhibitor of kB kinase e pathway [21-26]. Whereas Niv W proteins causes infection by blocking Toll-like receptor 3 and Inhibitor of kB kinase e pathway [21-26].

In recent year’s outbreak of viral infections is significant. Considering the pathogenesis and high mortality rate there are no vaccine available for human use. Recently a subunit Henipavirus vaccine formulation protects against lethal Nipah virus infection [34-37]. Lately an antiviral drug targeting viral envelop protein monoclonal antibody was reported to be effective in prophylaxis and treatment of Nipah virus infection [29-31]. Also a viral envelop protein targeting monoclonal antibody was reported to show efficacy in post-exposure prophylaxis but the efficacy of treatment to clinical trials has been disappointing [32].

The antiviral drug chloroquine and ribavirin treatment does not prevent death in experimental models [33]. The treatment currently used is just supportive and to develop a vaccine for effective treatment is imperative.

Methods of prevention of viral infections include proper personal protective equipment (PPE) by healthcare workers. This is a multi-disciplinary approach involving healthcare workers, veterinarians, and agricultural workers. The global veterinary community is working to prevent outbreaks of human Nipah virus infections and animal respiratory diseases. FAO and OIE urges a one health approach to protecting horse, human, and animal health. The current vaccine is live-attenuated vesicular stomatitis virus-based vaccine live-attenuated vesicular stomatitis virus vaccines protect ferrets [38-41].

REFERENCES

