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INTRODUCTION

In the era of molecular genetics and advanced technology, 
prompt diagnosis of various cancers has not only become simple 
enough but has been bountiful when it comes to anticipated 
cancer progression yet the therapeutic armamentarium is still 
a major challenge worldwide because of increasingly available 
therapeutic regimens and patients’ preference [1].

The time elapsed since the initiation of cancer or patient presen-
tation to diagnosis and ultimate treatment decision is the most 
important factor in the prognosis and survival of patients; along 
with the delivery of proper medical care, for which, a multidis-
ciplinary approach system was initiated, which included experts 
from different fields of medicine, called Multidisciplinary Tumor 
Boards (MDTs) [2, 3].

Over the last decade, scientific evidence has shown that MDTs 
have significantly improved the clinical and survival outcomes 
of cancer patients by delivering timely-accurate diagnosis [3, 4].

During the time of COVID-19, the transition from face-to-face 
MDTs to virtual MDTs assisted in broadening the local cancer 
treatment-decision meetings into worldwide networks with 
timely discussion. It is a cost-effective means of facilitating 
easier access to clinical trial opportunities [5]. However, it has 

also put ample workload on the experts which may exhaust the 
team or lead to decreased efficiency in the meetings’ outcomes.

The creation of Artificial Intelligence (AI) in healthcare has rev-
olutionized almost the complete process of diagnosis, treatment 
and treatment outcomes by offering pertinent meaningful diag-
nosis and treatment streamlined regimens [6]. AI has demon-
strated valuable results in different treatment regimens including 
surgery, chemotherapy, radiotherapy, immunotherapy, targeted 
therapy and nanotechnology [7].

In this review, the authors aimed to evaluate the assistance of 
AI in Multidisciplinary Tumor Board meetings by examining 
the concordance rate (level of agreement) between treatment 
decisions predicted by AI and MDT experts.

METHODOLOGY

This study uses a scoping review approach to see how AI and 
MDTs work together in cancer treatment. The main goals are 
to assess AI’s role in treatment, compare its recommendations 
with MDTs recommendations, and gather studies about AI and 
MDTs in cancer care.

We included original research focused on cancer and tumors 
that specifically examined AI and MDTs. We excluded review 
articles, studies with only abstracts, or research not related to 
cancer, AI, or MDTs.* Address correspondence to this author at the Karachi Medical and Dental 

College, Karachi Metropolitan University, Karachi, Pakistan.  
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Abstract: Multidisciplinary Tumor Boards (MDTs) are meetings where experts get together to decide what the best treatment for cancer 
patients is. But we could make even better treatment decisions by adding Artificial Intelligence (AI) to these teams. In this review, we examine 
how AI can contribute to selecting the appropriate treatments for MDTs. While there is still some work to be done, AI has certainly already 
shown that it can help us better diagnose and treat cancer. It reviewed 22 studies from 2016 to 2024 that looked at how often AI’s suggestions 
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forms of commerce that have been somewhat slower to come to medicine.
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Literature Search Strategy

Under the above keywords, Boolean operators, such as “Arti-
ficial Intelligence,” “Multidisciplinary Tumor Board,” “cancer 
treatment,” “tumor management,” we did a detailed search on 
PubMed. Only articles in English were included, and abstracts 
were checked to see if they met the criteria for inclusion or exclu-
sion (Fig. 1).

Fig. (1): PRISMA 2020 Flow Diagram for New Systematic 
Reviews which Included Searches of Databases and Regis-
ters.

RESULT

Demographics

A scoping review of 22 studies published in 2016 – 2024, almost 
all of which were retrospective, was carried out. Six studies cov-
ered breast, five gastric, four lung, four colon, three recto, and 
one esophageal cancer. A majority of the research focused on 
lung, breast, and colon cancer. The majority of studies geograph-
ically were carried out in Germany, Korea and China. The ages 
of participants ranged from 35 to 89 years of age (mean age of 
about 60 years; (Figs. 2, 3).

In Table 1, each study is summarized and includes the type of 
study, study objectives, sample size, cancer type’s studied as 
well as key findings [8-29].

Alignment of AI and MDT Decisions

Some studies compared AI and MDT treatment decisions by 
grouping them as "recommended," "for consideration," and 
"not recommended" [12, 19, 23, 26]. In Suwanvecho’s study, 
decisions were counted as matching if they were "identical" or 
considered "alternatives" [18]. For instance, other studies used 
scoring and interviews to understand extent to which AI and 
MDT decisions matched [20]. With GPT employed, cases were 
supplied to evaluators as they are supplied in MDTs [8, 9, 11].

Agreement between AI and MDT decisions ranged from 48.9% 
to 99.1%, with most studies reporting 72% to 87%. However, 
Stefan Lukac's study showed only 16.05% agreement, possibly 
because ChatGPT didn’t take neoadjuvant treatments and ongo-
ing studies into account, or interpreted Her2 positivity mathe-

Fig. (2). Map Diagram of the Countries Studies.
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matically rather than considering overexpression. ChatGPT did 
adjust treatment options based on age for older patients, suggest-
ing personalized care [11].

Several studies also examined the influence of factors such as 
patient’s age, type of treatment and their genetic profile on agree-
ment rates. We didn't find any compelling data regarding these 
factors after reviewing multiple studies, but generally, agree-
ment was lower for older patients. Rates dropped from 63.8% to 
20.2% for those over 70, as noted in Won Suk Lee’s study [27]. 
Similar findings are presented by Park Young’s and Somashek-
har’s studies showing that age influences the alignment of AI 
with MDT [12, 26].

Factors Responsible for Discordance between AI and 
MDT Decisions

Differences between AI models and MDT decisions were 
affected by several factors. For instance, older patients (70 years 
or older) were less likely to receive chemotherapy or intensive 
treatment. Lower agreement rates were reported for use of bio-
logic agents due to lack of AI system suggestion in such patient 
populations [27].

Fig. (3). Cancer Studies Trend Each Year.

Table 1. Key Findings.

Author Objective Study Design Cancer Type AI Model Key Findings

Schmidl et 
al. (2024) [8]

To assess ChatGPT 3.5 and 
4.0’s recommendations for 
primary head and neck cancer, 
comparing them to MDT deci-
sions.

Pilot Study 
(20)

Head and 
Neck

ChatGPT 
3.5 & 4.0

ChatGPT 3.5 surgery recom-
mendation: 90% (18/20).
Text summarization:  
(κ value)
ChatGPT 4.0 = 0.612, 
ChatGPT 3.5 = 0.459
ChatGPT 3.5 suggested 
more treatment options (avg. 
4.85).

Schmidl et 
al. (2024) [9]

To compare Claude 3 and 
ChatGPT 4.0 as MDT support 
tools for head and neck cancer 
treatment.

Retrospective 
(50)

Primary Head 
and Neck 
Cancer

ChatGPT-4 
& Claude 3

Claude: 16.3/17 (Reviewer 
1), 15.2/17 (Reviewer 2), 
ChatGPT: 15.1/17, 13.6/17.
Treatment summarization 
score: ChatGPT 4.5/6, 
Claude 4.37/6.

Daye et al. 
(2024) [10]

To evaluate AI’s ability to 
predict initial MDT treatment 
recommendations.

Retrospective 
(140)

Hepatocellu-
lar Carcinoma XGBoost

Model performance: >72% 
for ablation, chemotherapy, 
surgery, transplant, pallia-
tive.

Lukac et al. 
(2023) [11]

To evaluate ChatGPT's rec-
ommendations for early-stage 
breast cancer compared to 
MDT decisions.

Pilot Study 
(10) Breast Cancer

ChatGPT 
3.5 

(ChatGPT 
Feb 13 

Version)

Overall Concordance: 
16.05% (64.2/400).
Anti-hormonal treatment 
requiring patients: 100% 
identified.

Park & Chae 
(2023) [12]

To analyze concordance 
between AI and MDT treatment 
recommendations.

Retrospective 
(322)

Gastric 
Cancer WFO Overall Concordance: 

86.96% (280/322).

Ural et al. 
(2023) [13]

To develop a smartphone-based 
decision support system for 
first-line urological cancer 
therapy.

Retrospective 
(1873)

Prostrate 
Cancer

Algo-
rithm-driven 

decision 
support 
system

Overall Concordance: 99.1% 
(1856/1873).
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Thavanesan 
et al. (2023) 

[14]

To develop ML models with 
the ability to predict curative 
Esophagus Cancer MDT treat-
ment decisions

Retrospective 
(399)

Oesophageal 
Cancer

MLR, RF, 
XGB, Deci-

sion Tree

AUC values:
 MLR = 0.793, RF = 0.757, 

 XGB = 0.740, DT = 0.709.

Sorin et al. 
(2023) [15]

To assess ChatGPT's recom-
mendations for breast tumor 
treatment based on summari-
zation.

Retrospective 
(10) Breast Cancer ChatGPT 

3.5

70% agreement between AI 
and Reviewers Scores:
Reviewer 1: Summarization: 
3.7, Recommendations: 4.3, 
Explanation: 4.6.
Reviewer 2: Summarization: 
4.3, Recommendations: 4.0, 
Explanation: 4.3.

Redjdal et al. 
(2022) [16]

To test ML models for pre-
dicting treatment decisions in 
complex breast cancer cases 
where CDSS recommendations 
were not followed.

Retrospective 
(298) Breast Cancer

Decision 
Trees, 

Random 
Forests, 

XGBoost

XGBoost, MLP: F1 score = 
83%.

Andrew et al. 
(2022) [17]

To develop ML models predict-
ing MDT recommendations for 
MMS vs concentional surgery 
or radiotherapy in nasal BCC.

Retrospective 
(304)

Basal Cell 
Carcinoma 
(BCC) Nasal

Machine 
Learning 
Model

Overall Concordance: 
45.1%.

Suwanvecho 
et al. (2021) 

[18]

To analyze concordance 
between WFO and MDT deci-
sions

Prospective 
(276)

Breast Cancer 
Colon Cancer 
Lung Cancer 
Rectal Cancer

WFO v18.8 Overall Concordance: 70%.

Zou et al. 
(2020)[19]

To explore consistency between 
WFO and expert panel treat-
ment recommendations for 
cervical cancer patients.

Retrospective 
(246)

Cervical 
Cancer

WFO 
v18.1R

Overall Concordance: 
72.8%.

Pluyter et al. 
(2020) [20]

To evaluate the impact of CDSS 
on MDT lung cancer decisions. Case based (8) Lung Cancer CDSS

Median values: (by review-
ers)
Information relevance, read-
ability, understandability: 4 
(min: 4, max: 5).
Confidence in decisions: 3 
(min: 2.5, max: 4).
Improved team performance: 
6 better, 2 Neutral.

Tian et al. 
(2020) [21]

To analyze concordance 
between WFO and MDT in 
gastric cancer and its prognostic 
impact.

Retrospective 
(235)

Gastric 
Cancer WFO v18.3 Overall Concordance: 

54.5%.

Kim et al. 
(2020) [22]

To analyze concordance 
between AI and MDT treatment 
recommendations.

Retrospective 
(405) Lung Cancer WFO

Overall Concordance: 
92.4%, higher in metastatic 
cases.

Kim et al. 
(2019) [23]

To analyze concordance 
between Watson for Oncology 
(WFO) and MDT in breast 
cancer treatment options.

Retrospective 
(170) Breast Cancer WFO

Concordance:
 Radiotherapy: 99% 
(143/144).
Chemotherapy: 93% 
(136/147).
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Choi et al. 
(2019) [24]

To analyze concordance 
between WFO and MDT 
decisions in advanced gastric 
cancer.

Retrospective 
(65)

Gastric 
Cancer WFO

Recommended treatment: 
41.5%.

For consideration: 87.7%.

Kim et al. 
(2019) [25]

To analyze concordance 
between WFO and MDT for 
chemotherapy options.

Retrospective 
(69)

Colon Cancer 
Rectal Cancer WFO v16.9 Overall concordance: 87%.

Somashekhar 
et al. (2018) 

[26]

To analyze concordance 
between AI and MDT treatment 
recommendations.

Retrospective 
(638) Breast Cancer WFO v16.4 Overall Concordance: 93%.

Lee et al. 
(2018) [27]

To analyze concordance 
between WFO and MDT in 
colon cancer.

Retrospective 
(656) Colon Cancer WFO v16.9 Overall Concordance: 

48.9%.

Zhou et al. 
(2018) [28]

To analyze concordance 
between WFO and MDT deci-
sions.

Retrospective 
(362)

Lung Cancer 
Breast Cancer 
Gastric 
Cancer 
Colon Cancer 
Rectal Cancer 
Cervical 
Cancer 
Ovarian 
Cancer

WFO
Highest concordance: 
95.83% (Ovarian).  
Lowest: 11.9% (Gastric).

Lin et al. 
(2016) [29]

To design an ML model that 
predicts MDT decisions for 
adjuvant breast cancer treat-
ments.

Retrospective 
(1065) Breast Cancer

Naïve 
Bayes, 

SVM (poly 
& RBF), 

Multivariate 
LR, Nearest 
Neighbors, 

Ripple 
Down 

Rules, J48, 
AD Trees

Concordance rate with 
respect to treatment modal-
ity:
MDT & NCCN/ESMO 
(endocrine) =85%
MDT & NCCN/ESMO (tras-
tuzumab) = 96%
MDT & NCCN/ESMO 
(adjuvant chemo) = 47% and 
57% resp

Treatment toxicity, particularly in older patients, financial lim-
itations, treatment availability, case complexity, and specific 
(driven by financial conditions or intolerance for some therapies) 
treatment preference were also factors. These differences were 
also influenced by treatments choices: for example, patients 
choosing surgery over radiation; variations in national guide-
lines; insurance coverage; and treatment access [16, 18, 19, 24]. 
These limitations are revealed by these findings on the effective-
ness of AI in fully matching MDT recommendations, particu-
larly in complex or financially challenging cases.

DISCUSSION

Using its advanced algorithms, Deep Learning (DL) and Natu-
ral Language Processing (NLP), AI has transformed medicine 
mostly in the area of oncology. In case AI can't match doctors, AI 
has a huge role to play in decision making, to search and analyze 
large datasets, to derive information from clinical trials and to 
serve them personalized treatment plans with patient treatment 
profiles. ChatsGPT, XGBoost, and Watson for Oncology are 

found helping oncologists in their work. ChatGPT can assist 
in suggesting treatments, forecasting decisions of Multidisci-
plinary Team (MDT), personalized care and smoothing the Mul-
tidisciplinary Team (MDT) workflows [6,9,30], supporting the 
oncologist in making more informed decisions by virtue of the 
model as an assistant [31, 32]. A known machine learning (ML) 
algorithm called XGBoost has shown record in learning from 
large dataset of clinical specimen classified into many classes; 
it has also been reported to assist in very complex clinical cases 
such as in breast and hepatocellular carcinoma [17,21].

For example, the other AI model, Watson for Oncology, has 
high concordance with MDT’s decisions across different types 
of cancer, and provides expert clinical insights [8,14] through 
its algorithms. Together, we’ve seen these AI tools help increase 
treatment accuracy, personalize medicine, and optimize clinical 
decisions more accurately. It promises us that we will give our 
patients faster, evidence based care. In addition to identifying 
these optimal therapeutic strategies, these models also play a 
large part in detecting cancer early thus improving the progno-
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sis of the patient [20,21] and improving the performance of the 
healthcare practitioner [33-35]. Furthermore, It enables quality 
improvement in radiology via assuring that the reports have a 
readable, accurate, and useful content for use in oncological care 
[36, 37].

We observe that the findings we have from all the studies prove 
the effectiveness of AI in clinical settings, showcasing the 
concordance between expert opinion from oncologists and AI 
recommendations that may vary by cancer type and treatment 
modality. For instance, we found studies have shown a high 
concordance rate in the treatment of breast cancer in radiation 
therapy and in the chemotherapy domain [9, 14]. However, it's 
not always effective and discordance has also been noticed in 
some specific demographics, particularly in older patients as AI 
suggests not to give any aggressive treatment to old age groups, 
this can limit the treatment for this age group and results may 
be dangerous. This attempt has raised many questions about the 
applicability of AI recommendations in populations with unique 
health profiles and demographics. Factors such as incorporation 
of biological agents have further decreased the concordance as 
AI systems often don’t allow these therapies, this highlights the 
need for continuous refinement and training of AI algorithms 
to solve these problems [25]. The problem of treatment tox-
icity, especially in elderly patients and financial barriers both 
collectively make the decision more complicated and restrict 
access to optimal care [16, 22]. After all these findings we can 
say that implementing AI can improve cancer care and increase 
the prognosis of patients after addressing the problems in treat-
ment accessibility.  

We’ve noticed the advancements AI brings to oncology with its 
integration with MTDs and hinted at difficulties with the usage 
of AI as well. In subsequent sections, we will further explore 
the barriers to AI becoming a standard of practice in oncology. 
Physician’s inexperience using AI is one of the root causes. The 
underuse of AI features and its implications for handling cases 
[37] is a result of lack of understanding. Moving case details and 
nuances in a physician’s record to an AI system is hard. A primary 
challenge is also bias and class imbalance due to patient number 
restrictions, data sharing costs, privacy and security concerns 
and the generated data complexity [38-40]. Not only that, there 
are legal risks when working with AI, which cannot be stressed 
enough. They admit that after all, there should be knowledge and 
data transfer if anything is going to happen and then the hospital 
as well as the oncologist should be bound legally [37]. Thus, the 
shift of human oncologists to AI only feels theoretical.

LIMITATIONS

A major limitation in our study pertains to the lack of research in 
many fields of oncology namely, dermatology, ophthalmology 
and neuro-oncology. We saw robust literature on colorectal and 
breast cancer. Research on gastric cancer was also appreciable. 
We included an almost equal amount of Eastern and Western 
studies, 12 and 11 respectively. In Eastern studies, the data set 
was more concentrated in the East-Asian population and only 

one of the South-Asian population (India). Similarly, a lack of 
research was noted in the European population in the Western 
studies. This restricts the generalizability of our results. Another 
noticeable limitation was time constraints for this scoping 
review.

CONCLUSION

The great potential of applying AI in the area of oncology, includ-
ing in aiding MDT, has been shown in this review which also 
streamlined patient care and significantly reduced the burden of 
work of an expert. We perceived the concordance rates extracted 
from our studies to be substantively consequential, ranging from 
48.9 – 99.1%, and falling primarily in the 72 – 87% band. They 
studied a host of algorithms, with Watson for Oncology and Chat 
GPT 3.5/4.0 being the major ones. Factors including Age, Finan-
cial Issues, National Guidelines and biological agents produced 
Discordance. Moreover, the studies were concentrated in high 
income countries. The potential of AI in oncological medicine is 
strong but one would hesitate to understand AI based on limited 
knowledge and ethical concerns. As such, more studies need to 
be done to answer these queries.
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ML: Machine Learning.
DL: Deep Learning.
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